
2024-05-09 09:24 1/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

Table of Contents
The Blog 2 ..

What is wrong with the 2023 League worlds opening ceremony? 2 ...
Thinkpad T14 Gen2 AMD eDP Screen/Panel Upgrade 4 ..

Original Panel 4 ...
New Panel 4 ...
Worth it? 4 ...

CVE-2022-0847 - Dirty Pipe Vulnerability in Linux 4 ...
Introduction 5 ..
Some background information 5 ...
What are the causes? 6 ...
Why is it important? 7 ...
Who is affected and in what ways? 8 ..
How can similar problems be prevented in the future? 8 ..
If such a problem happened, how can we mitigate it? 9 ...
Conclusion 9 ..
Biblography 10 ..
Further reading 10 ..

Linux Audio Essentials 10 ...
Extra Insight 11 ...
Timestamps 11 ..
Links (and references) 12 ..
Notes 14 ..
Contact me 14 ...
Corrections 15 ...

HD Radio with RTL-SDR 15 ...
Intro 15 ..
Some downsides I see 16 ..
Receiving signals on Linux 19 ...
Conclusion 19 ..

2024-05-09 09:24 2/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

The Blog

What is wrong with the 2023 League worlds opening
ceremony?

The original league worlds opening ceremony video from this year has very many technical quirks. Here
is what I noticed and spent a a few (prolly a dozen) hours fixing.

The audio on the YouTube upload is unexplicably in mono and sounds notably worse than the
Twitch livestream which was in stereo.
Likely destructive interference when collapsing stereo to mono?
The whole 'scripted' section of the opening is actually running at 29.97 fps, and interpolated to 60
but in the worst way.
Half of their cameras are running at 29.97 which means every frame is duplicated for the stream
which is 59.94 - this on it's own is fine. Most of the side-angle cameras are 29.97.
The other half of the cameras are also running at 29.97, but are interpolated to 59.94 THROUGH
FRAME BLENDING?!?
This means that every other frame is literally a 50/50 blend of the two frames before it. This is what
causes that motion-blur like feel, and you can instantly tell which cameras they are on.
It might be the cameras that also do AR are doing blending? unsure.
In fact, the main stage camera and the cable cam blend on opposite frames - eg: one has good
even frames, blended off, the other is vice versa. This might be because of an internal delay? I'm
not sure. Don't get me wrong 1080p29.97 is fine, although odd since sports is usually 720p60 or
1080i60.
The version on YouTube took a video that had TV black levels, mapped it to PC, then was converted
to TV again, resulting in crushed black and white levels losing detail
The version on Twitch has the audio and video about 100 ms out of sync, this is most noticeable
with the fireworks at the end of gods not being in line with music. Interestingly, the audio and video
ARE synced correctly on YouTube version.
TV (and most video formats) uses 16-235 to express black-white instead of 0-255, whereas PC is
0-255. So, if you take a 16-235 feed, map it to 0-255, then crop it into 16-235 again, you effectively
increase contrast and reduce your dynamic range, that is what seems to have happened on
YouTube.
Another odd quirk: some of the camera angles are different between the YT and Twitch versions?
Either these were cut after the fact, or it was filmed weird? Not sure, I can upload a side by side
comparison if anyone is curious. Notable on some audience and a few side angle shots.
Also if you watch the side by side, depending on if you sync up the video or audio feeds, it almost
looks like there are 2 video systems, and depending on which you sync up on, some transitions
happen 100 ms before or after the other, with the other half being synced. I think the AR stuff is
probably separate?
About that frame blending, there are 4k60 audience camera recordings on YouTube, and if you
watch those carefully, you'll notice the camera feed going to the video walls also does frame
blending. This tells me that whatever system video was going into first was doing the blended
frames, but again, only on half of the cameras.

https://wiki.tonytascioglu.com/articles/what_is_wrong_with_the_2023_league_worlds_opening_ceremony
https://wiki.tonytascioglu.com/articles/what_is_wrong_with_the_2023_league_worlds_opening_ceremony

2024-05-09 09:24 3/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

So, to fix this

I took the stream from Twitch, split the audio and video. For the video, I couldn't simply drop all
odd or even frames because their different cameras interpolate different sets of frames.
From my cut, the “main” stage camera had odd frames correct, and even frames blended, and the
cable cam that is further away ad all even frames correct and odd frames blended.
So I spent 3 hours clipping each camera angle, and dropping either the odd or even frames
accordingly.
I then re-synced the audio with that 100ms offset. This left me with a 29.97 fps video. That is my
“cleaned up” version that I might upload, but, since the original was 60 fps, I wanted to interpolate
it, but properly, not through frame blending.
So I ran the whole thing through an AI video interpolation tool overnight on my GPU, and there you
have it, 4k60 (technically 59.94). I'll add the 29.97 maybe as well.

Stuff I did not fix:

The yellow jacket intro video is filmed in 24 fps, and brought up to 30, but not in a very consistent
way, so it's staying as is.
I can't change mic volumes, there isn't a lot, but you can pretty easily tell which parts are lip-
synced anyway (listen for the reverb different, or when vocals sounds like they are stereo - eg: first
10s of vocals in gods sounds live, most of the rest is off the tape).
I also can't fix their broken shadows on their AR characters.

Note: I do not own the music or video, those are from Riot Games. I'm simply uploading this in case
anyone else wanted to watch it without the bizarre quirks of the version on YouTube.

If anyone from the Riot Games technical team is watching, I'm genuinely curious about how their
production setup works and I would love to chat. (Or if you know someone who works with the technical
team)

This is not meant to be a dunk on the performance, overall it was well put together, these are just 'quirks'
I saw and couldn't unsee.

Here is the fixed version

Video

2023-12-20 07:36 · Tony

https://www.youtube-nocookie.com/embed/F4n47FMUcm8?
https://www.youtube-nocookie.com/embed/F4n47FMUcm8?

2024-05-09 09:24 4/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

Thinkpad T14 Gen2 AMD eDP Screen/Panel Upgrade

If you read Thinkpad T14 Gen2 AMD, I hated the screen they shipped with the T14, and thought it was a
disgrace for a “premium” laptop.
Well, it annoyed me so much that I started to research how to upgrade the screen of the laptop.

Original Panel

The original panel is a was an Innolux N14HCA-EAE.
It is IPS-type, <250 nits, and has garbage colours.

Since it is 1080p non-touch, replacing it with another 1080p panel isn't too hard.
If you had a 4k screen, you would need a new eDP cable. If touch, replacing the digitizer is another step.

Look for the Thinkpad maintenance guide for removing an old screen. Follow it like Lego.
This is an irreversible process. Save the bezel. It's supposed to be replaced, good luck finding a
replacement. Pry it slowly.
The original screen is held by double sided tape. I didn't replace mine, you maybe should - again, good
luck.

New Panel

I bought the Innolux N140HCG-GQ2.
It's low power, 400 nit, 90+% sRGB, IPS-like, 1080. Much better.
No new cable needed, drop in replacement basically. Comparison sites label it the best of the 3/4 “low
power” display options.
You can find via AliExpress and hope it's not a fake.

Re-use existing tape and bezel when reassembling, clip display properly.

Worth it?

100%. The brightness and colour gamut are very much noticable and appreciated.
It makes me actually enjoy looking at the laptop screen.

If you have the patience and courage, go for it! LMK how it went!

2023-07-02 15:42 · Tony

CVE-2022-0847 - Dirty Pipe Vulnerability in Linux

https://wiki.tonytascioglu.com/articles/upgrading_thinkpad_t14_gen2_amd_screen
https://wiki.tonytascioglu.com/reviews/lenovo_thinkpad_t14_gen2
https://wiki.tonytascioglu.com/articles/linux_dirty_pipe_vulnerability

2024-05-09 09:24 5/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

Introduction

The Linux Dirty Pipe vulnerability, also known as CVE-2022-0847 is major a vulnerability first discovered
near the end of February 2022 which affects Linux kernel versions 5.8 and above. The Dirty Pipe
vulnerability is considered severe since there aren't workarounds (besides upgrading to a patched
version of the Linux kernel) and it allows local privilege escalation allowing users to write to files they
don't have write access to (such as /etc/passwd), which then allows them to run commands as root or
drop to a root shell.

Before I go any further, if you are reading this post from a computer running Linux (or GNU/Linux), make
sure you have updated your kernel to 5.16.11, 5.26.36 or 5.10.102 to make sure you're protected against
this vulnerability!

This vulnerability was first discovered last month when investigating an older bug report regarding
corrupted files. In particular, there were reports of corrupted CRC checksums at the end of zip files in a
particular use case involving splices and pipes.

Some background information

There are a few background elements that I think are useful to understand this vulnerability and how it
works: Pipes, pages, the page cache and the splice system call on Linux.una20

First: Pipes. Pipes in Linux are a unidirectional, inter-process communication method provided by the
kernel. Pipes are commonly used to pass information between 2 applications. The output of the first
application is saved to the pipe, which is then read by the second application. Pipes can be used both in
the shell using '|' to redirect the output of one program to the input of the next (such as if you do cat foo |
grep a | cut -c 2- | uniq | sort | tee bar), or within programs, which is more flexible and powerful. Under
the hood, pipes are treated and behave just like files, which is part of the Unix philosophy. However,
unlike files on secondary storage, the data in pipes is stored in a buffer (that works like a ring using
pages) instead of on the disk, where data from the first application is added to the buffer, and the second
application reads from it. In other words, it's a handy way to send data from one application to another,
where one pushes data into the pipe, and the other pulls it from the pipe.

Next: Pages. As discussed in the earlier modules of the course, pages are blocks of virtual memory.
Pages are generally the smallest unit of data used for virtual memory. These pages are what will contain
files, data, code, so on, and can be loaded from the secondary disk (SSD/HDD), or from system memory.
On Linux based systems, the page size is typically 4 KiB (4096 bytes). (You can check the page size for
yourself by running 'getconf PAGESIZE')

To speed up I/O operations when a user is frequently working with certain pages, Linux maintains a page
cache, which will essentially cache the commonly used items from secondary memory (SSD/HDD) onto
primary RAM. This means that if you're continually loading a part of a file, instead of waiting for a hard
drive each time, it can be cached and retrieved from the cache in memory. This cache is usually in
unused parts of memory, and can be easily cleared if an application needs to actually use the memory.
Pages in the page cache that are modified while in memory (such as by a write to the file) will mark the
page as 'dirty', which have to be written back to the disk to save/persist those changes.

2024-05-09 09:24 6/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

Finally, the splice() system call. Splice is a system call that moved data between files on the disk and
pipes without having to load and go through the userspace. Generally, splice can work by just remapping
pages, which makes it fast. This means that instead of passing the page around, it passes page
references, without having to do the copy. You can splice a file to a pipe, then splice back from the pipe
into another file without dropping to userspace, which makes this both fast and secure.

What are the causes?

The dirty pipe vulnerability takes advantage of a pipe and a splice call. This started as a bug that was
introduced with a commit which refactored the pipe buffer code, changing how 'mergeable' checks were
done.

As mentioned in the section above, all data, including the data temporarily stored in a pipe lives in a
page, which can get cached into memory. The first write into a pipe allocates a 4 KiB page. Then, this
page is used for writes until it fills up, at which point a new page is allocated. However, if you use the
splice system call, the kernel first loads the data from the file (source) into the page cache, then, creates
a 'pipe_buffer' struct (the destination pipe) which points to the page cache. This is a zero-copy, since it
essentially just copies the reference to the page in the page cache. However, even if the page isn't full, it
can't be appended to, since the page is owned by the page cache, not the pipe.

The checks to ensure that data isn't appended to page in the page cache have changed over time, but
the latest revision with Linux 5.8 turned a bug into a critical issue. Since kernel 4.9, there has been a bug
causing the flags member of the pipe_buffer struct to be missing, however, the new critical issue allows a
user to inject PIPE_BUF_FLAG_CAN_MERGE into the page cache reference, which then allows the user to
overwrite data in the page cache! Once the PIPE_BUF_FLAG_CAN_MERGE flag is injected into the
reference, writing new specially crafted data into the pipe that was originally loaded with the splice
causes the kernel to append this data to the end of the page in the page cache, instead of creating a new
page.

Since the splice operation loaded the contents of a file into the pipe, by placing the pages for the file in
the page cache, if we can write to the page cache, we can effectively write to the version of the file that
will be used by the OS. This is critical, since you only need read-access in order to load the contents from
a file into a pipe. However, as seen here, by setting the flag, we can write to the page in the page cache.
This means that any user can write into files they would normally only have read access to. Essentially,
the kernel is tricked into thinking this is a normal page for the pipe that is safe to write to, however, it's
actually the contents of other files. Yikes.

Now, there is one aspect of this to consider. By using this vulnerability, you can write data into the page
cache, which is loaded with the contents of another file. However, since the kernel is unaware of this
change, the page in the cache is not marked as dirty. This means that eventually, either on system
restart, or if the kernel needs to reclaim the memory, the page in the cache will be dropped. This is why
this bug was hard to spot in the wild, since in most cases, it would be gone by the time the system
restarted. On the other hand, since the data in the page cache isn't written to the disk, and lasts for a
considerable amount of time, this provides a stealthy attack surface that doesn't leave a trace on the
disk.

2024-05-09 09:24 7/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

Why is it important?

This vulnerability is critically important, since it can be exploited to achieve local privilege escalation.
This vulnerability allows any unprivileged user to write to pages in the page-cache which correspond to
files they only have read access to. Since the kernel will use the page cache to load a file if it is cached,
this effectively allows the user to overwrite data into any file they have read access to, with some
limitations.

This can be exploited to get root access (or a root shell) through several means. For example, through a
few steps, one can simply clear the root password from /etc/passwd, add SSH keys, or change data used
by root processes. The simplest is likely by disabling the password for the root user. While normal users
can't access /etc/shadow, by removing the x in /etc/passwd, you can remove the lookup to /etc/shadow,
and allow password-less login to the root user. For those who are curious, there is a proof-of-concept
exploit available on the original dirty pipe vulnerability page that allows writes into read-only files. Once
an attacker has root access on your system, there's little they can't do.

A system with this vulnerability can be exploited by attackers for any malicious purpose following a few
steps. First, the user creates a pipe. This is a pipe which they must have write access to. Next, you fill the
pipe with random or arbitrary data. The contents don't matter, it just needs to fill the pipe so that the
PIPE_BUF_FLAG_CAN_MERGE which is later incorrectly checked will get set in all of the pages and entries
used by the pipe. Next, you empty the pipe, by reading the data from it. This leaves the flag set in all
instances of the pipe_buffer struct in the ring.

For step 4, you need to make a splice system call for the file you want to modify, opened with O_RDONLY
(read only), and splice it into the pipe just up to the target offset. The target offset is the location in the
file where you want to write your new data to and make your changes. For example, this could be the
location of the root user password. Next, you write the data you want to replace in the file into the pipe.
As discussed in the last step, instead of creating a new anonymous pipe_buffer struck with new pages,
the new data added to the pipe will begin to replace the data in the page from the read-only file (which is
in the page cache) because the PIPE_BUF_FLAG_CAN_MERGE flag is set. Recall that that flag would
normally only be set if this were a normal pipe, but remained set.

This exploit was particular interesting (and terrifying) for myself since I had my secondary computer
running an earlier build of Linux 5.16, which was vulnerable, and I was able to test both the small code by
the original author, as well as their proof-of-concept exploit which both worked. While not trivial, it is a
vulnerability that is relatively simple to exploit. While there was somewhat similar exploit named Dirty
Cow from a few years ago, this is simpler to exploit.

There are however a few limitations to these exploits, although they are all simple to overcome once you
gain root access or a root shell. First, you need to have read access to a file. Without read access, you
won't be able to use the splice call. Next, the offset that you want to overwrite can't be on a page
boundary (ie: can't be a multiple of 4096). This is because you need to splice at least 1 byte from the
target file into the pipe. Next, you are limited to overwriting 1 page (4096 bytes). While this might seem
short, since you can't change large files, it's more than enough to update important files such as
/etc/passwd. Finally, you can't resize the file, so the data you write can't alter the file size. Again, once
you have root access, the other limitations wouldn't matter for an attacker, since they can use their root
access to change any other files they wanted.

2024-05-09 09:24 8/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

Who is affected and in what ways?

Any device running Linux 5.8 or later (without the latest patches) are affected. This includes many
servers, desktop computers and laptops, as well as many recent mobile devices running Android. In
particular, systems running many major distributions from the past 2 years without the most recent
updates are vulnerable. This includes Debian 11 (bullseye), Fedora 33 and up, Ubuntu 20.04 and up, as
well as many others including Arch, Gentoo, OpenSUSE, as well as their derivatives. This constitutes a
good portion of server and desktop systems running recent installations of GNU/Linux.

Although it is a local vulnerability, meaning that it doesn't add a new vector for an outside attacker, if an
attacker has any access to a user on the system, be it physical or digital such as over SSH, Telnet or VNC,
they can exploit this vulnerability to gain root access.

Equally important is the use of the Linux kernel in the Android mobile operating system. Within a few
days of the discovery of the original vulnerability, the bug was reproduced on a Google Pixel 6, and
reported to the Android Security Team. If the bug is reproduced, then it means that there will also be
exploits targeting these devices. Of course, this impacts more devices than just the Pixel 6. For example,
the Samsung Galaxy S22 series are all based on Android 12, running Linux kernel 5.10.43, which is
vulnerable. Android versions prior to Android 11 used Linux kernel versions 4.4, 4.9, 4.14, 4.19 or 5.4,
however, starting with Android 12, support for Linux 5.10 was added, with Android T (the experimental
branch) also using 5.10. This means that many flagship phones are going to ship with a build of Linux
5.10. Given the poor record of Android manufacturers issuing software updates, this can end up affecting
a good number of recent phones that were released.

How can similar problems be prevented in the future?

Given that this bug was introduced due to programmer error when refactoring a section of the code, it's
harder to provide many meaningful suggestions. A solution that is frequently presented is to have a more
stringent code-review process, with more developers or a stronger emphasis on security. However,
patches going into the Linux kernel already undergo a thorough code-review from multiple developers.
While there are also suggestions to avoid refactoring some code since it can introduce bugs such as this
one, refactoring is also important in order to clean up the code and keep it consistent.

Some mistakes like this could be caught in part by using analysis tools. For example, the basis of this
vulnerability was originally a bug with uninitialized flags for the struct. This type of mistake such as
uninitialized variables in structs could be caught if the team added corresponding checks. However, this
of course comes with the downside that the developers might also get bogged down with tons of false
positive reports. Some have also suggested switching to a safer language such as Rust, but in cases like
this where it's very specific behavior in specific calls and specific checks, which don't necessarily break
the safety of the language, it's debatable it would have caught a mistake such as this one.

We have also seen that having a simpler codebase makes auditing much simpler while also making it
both faster and safer since it becomes easier to stop mistakes. For example, the Wireguard VPN protocol
which was written to be a faster, safer VPN protocol was welcomed into the Linux kernel in that past
years since it's so much simpler then competing protocols such as OpenVPN (which is based on the
comparatively massive OpenSSL and TLS libraries). However, a kernel is much more sophisticated than

2024-05-09 09:24 9/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

VPN protocols, and given that Linux is a monolithic kernel, it is much harder to just have simpler code -
although there are projects such as Redox OS which are both supposed to be simpler, using a
microkernel architecture, as well as being written in the safer Rust language.

Overall, this is one of the aspects where open source shines. We can always have more developers
looking at and through the code, and it allows users such as Max Kellermann (the original author of the
vulnerability) to not only find bugs such as this one, but also patch them in a timely manner.

If such a problem happened, how can we mitigate it?

This vulnerability was reported professionally by the security researcher, who alerted the Linux kernel
security team within a day of his discovery of the vulnerability, along with a patch. This was quickly sent
to the Linux Kernel Mailing List the next day, where it was merged into the next release within a few
days. Overall this problem fixed very quickly by the Linux developers, with patched versions of the kernel
out within a week of the discovery of the original vulnerability. This is excellent, and it shows that
security issues such as this one are taken very seriously by the developers who can work through these
issues and patch them in an effective manner.

Once again, this is a good example of how the open source software community is very good at
responding to issues like this once they are found with everyone working together to get it patched and
ensure systems get updated. This vulnerability was fixed for the release of versions 5.16.11, 5.15.25, and
5.10.102. Of these, 5.16.11 is the latest stable release that distributions like Fedora and Arch use, with
5.15 and 5.10 being LTS releases.

Once the new versions of the kernel were released, all of the distributions mentioned in my section above
have either upgraded their kernel to include the patch for this vulnerability, or, backported the patch for
this vulnerability into their kernel versions. This is a good example of the author, kernel developer, as
well as distribution maintainers working together to ensure security issues like this get patched.

As I mentioned in the start of this post, the mitigation for this vulnerability for both desktop and server
systems is to update your kernel! Whether you're maintaining a server or your system, make sure your
software is up-to-date! For servers in particular, make sure you're running a version of your distribution
that is actively maintained, such as an LTS release to ensure patches like this one get backported to
ensure your systems are safe.

Mobile users on the other hand will have to wait for updated versions of Android to be released for their
devices, likely through security updates. We can hope that they will be as responsive as distribution
maintainers are, and apply these patches and deliver new updates in a timely manner. Since this bug
was introduced in Kernel 5.8 from a few years ago, and the most recent Android version to ship with a
vulnerable kernel is Android 11, most devices that are vulnerable are relatively new, increasing the
chance they will get patched.

Conclusion

I hope you enjoyed reading this and learned about the dirty pipe vulnerability on Linux, and how pipes,
pages, the page cache and splice call work in general!

2024-05-09 09:24 10/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

Biblography

“CVE-2022-0847,” CVE, 03-Mar-2022. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0847. [Accessed: 14-Mar-2022].
D. Das, “What is the dirty pipe exploit in linux and how can you fix it?,” Make Use Of, 10-Mar-2022.
[Online]. Available: https://www.makeuseof.com/what-is-the-dirty-pipe-exploit-in-linux-and-fix-it/.
[Accessed: 14-Mar-2022].
D. LeClair, “New dirty pipe linux vulnerability is the worst in years,” How-To Geek, 08-Mar-2022.
[Online]. Available:
https://www.howtogeek.com/790435/new-dirty-pipe-linux-vulnerability-is-the-worst-in-years/.
[Accessed: 14-Mar-2022].
M. Kellermann, “The dirty pipe vulnerability,” The Dirty Pipe Vulnerability - The Dirty Pipe
Vulnerability documentation, 07-Mar-2022. [Online]. Available: https://dirtypipe.cm4all.com/.
[Accessed: 14-Mar-2022].
P. Arntz, “Linux ‘dirty pipe’ vulnerability gives unprivileged users root access,” Malwarebytes Labs,
11-Mar-2022. [Online]. Available:
https://blog.malwarebytes.com/exploits-and-vulnerabilities/2022/03/linux-dirty-pipe-vulnerability-gi
ves-unprivileged-users-root-access/. [Accessed: 14-Mar-2022].
S. Hazarika, “Linux kernel bug dubbed 'dirty pipe' can lead to root access, affects Android devices
as well,” XDA Developers, 09-Mar-2022. [Online]. Available:
https://www.xda-developers.com/dirty-pipe-linux-vulnerability-root-android/. [Accessed: 14-
Mar-2022].

Further reading

The original post disclosing this vulnerability has lots of other technical information, including how the
vulnerability was discovered due to a problem with repeated corruption on web-server logs.
https://dirtypipe.cm4all.com/

The commit that introduced this vulnerability is here:
https://github.com/torvalds/linux/commit/f6dd975583bd8ce088400648fd9819e4691c8958

For those of you that want to try the proof-of-concept exploit on your unpatched devices, the source code
is available here: https://packetstormsecurity.com/files/166229/Dirty-Pipe-Linux-Privilege-Escalation.html

If you have any questions or comments, feel free to leave it below!

2022-03-14 07:06 · Tony

Linux Audio Essentials

This post is also in the form of a video blog. Watch the video first!

Youtube: https://youtu.be/HxEXMHcwtlI
Peertube:
https://peertube.tonytascioglu.com/videos/watch/4a6b4e74-a5af-4616-96f4-5d9773033152

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0847
https://www.makeuseof.com/what-is-the-dirty-pipe-exploit-in-linux-and-fix-it/
https://www.howtogeek.com/790435/new-dirty-pipe-linux-vulnerability-is-the-worst-in-years/
https://dirtypipe.cm4all.com/
https://blog.malwarebytes.com/exploits-and-vulnerabilities/2022/03/linux-dirty-pipe-vulnerability-gives-unprivileged-users-root-access/
https://blog.malwarebytes.com/exploits-and-vulnerabilities/2022/03/linux-dirty-pipe-vulnerability-gives-unprivileged-users-root-access/
https://www.xda-developers.com/dirty-pipe-linux-vulnerability-root-android/
https://dirtypipe.cm4all.com/
https://github.com/torvalds/linux/commit/f6dd975583bd8ce088400648fd9819e4691c8958
https://packetstormsecurity.com/files/166229/Dirty-Pipe-Linux-Privilege-Escalation.html
https://wiki.tonytascioglu.com/articles/linux_audio_explained
https://youtu.be/HxEXMHcwtlI
https://peertube.tonytascioglu.com/videos/watch/4a6b4e74-a5af-4616-96f4-5d9773033152

2024-05-09 09:24 11/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

The description below is longer then the one on YouTube, which passed the maximum 5000 character
limit. The version here has all the full URLs and any extra comments I might add.

Extra Insight

In this video, I explain how audio and sound works on Linux based comptuers and systems. More
specifically, I go over the point of sound hardware, kernel drivers such as OSS and ALSA and userspace
sound servers such as PulseAudio, Jack and Pipewire.

Along the way, I discuss the advantages and drawbacks of the current implementations, as well as why
one implementation is often favored over another. Finally, I discuss the latest-and-greatest sound server,
Pipewire, what it means, and how you can benefit from the improvements.

This video is a bit rambly at times, so please stick with me, and I hope you learn something throughout
and feed your curiosity. Please feel free to use the timestamps below to skip between sections!

Timestamps

(grouped by topics)

Introduction

00:00 - Introduction

The Hardware

00:18 - Basic Hardware, Inputs and Outputs
00:36 - Sound Cards (and what they do)
01:01 - Digital Audio, PCM and extra hardware

Kernel Drivers

01:29 - Kernel Drivers! (How to interact with hardware)
01:53 - OSS (Open Sound System)
02:12 - ALSA (Advanced Linux Sound Architecture)
02:46 - ALSA Limitations - hardware mixing/multiplexing

Userspace Sound Servers

03:54 - Pulseaudio (and sound servers)
04:25 - Benefits of PA - mixing and resampling

2024-05-09 09:24 12/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

07:26 - Drawbacks of PA (and JACK introduction)
08:13 - JACK and its benefits
09:57 - Comparison with PA and other software

Pipewire (and ramble)

11:12 - Pipewire (and its benefits)
14:05 - Future of Pipewire
15:17 - Note on Bluetooth (rant)

- note: mostly fixed!

17:52 - Conclusion

Links (and references)

Sound Cards

https://en.wikipedia.org/wiki/Sound_card

Check ALSA compatibility of a sound card

https://www.alsa-project.org/wiki/Matrix:Main

DAC and ADC

https://www.ramelectronics.net/analog-digital.aspx
https://en.wikipedia.org/wiki/Digital-to-analog_converter

Nyquist Shannon sampling theorem

I didn't get to it in this video, but it explains why 44.1 and 48 kHz are perfectly fine.
More specifically, how we can perfectly reconstruct analog waves provided no aliasing and they are
below the nyquist frequency.
https://www.allaboutcircuits.com/technical-articles/nyquist-shannon-theorem-understanding-sampl
ed-systems/

Chris Montgomery Videos

I found these super helpful to understand digital audio and video fundamentals.
Discusses PCM and more, and also the nyquist stuff from above in video 2.
https://www.xiph.org/video/

https://en.wikipedia.org/wiki/Sound_card
https://www.alsa-project.org/wiki/Matrix:Main
https://www.ramelectronics.net/analog-digital.aspx
https://en.wikipedia.org/wiki/Digital-to-analog_converter
https://www.allaboutcircuits.com/technical-articles/nyquist-shannon-theorem-understanding-sampled-systems/
https://www.allaboutcircuits.com/technical-articles/nyquist-shannon-theorem-understanding-sampled-systems/
https://www.xiph.org/video/

2024-05-09 09:24 13/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

https://wiki.xiph.org/A_Digital_Media_Primer_For_Geeks_%28episode_1%29
https://wiki.xiph.org/Digital_Show_and_Tell/Episode_02

Also see Chris' blog while you're at it, some interesting reads:
https://xiphmont.dreamwidth.org/

Kernel Driver Architecture

I found this a simple overview when researching
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Introduction-to-Linux-Kernel-Driv
er-Programming-Michael-Opdenacker-Bootlin-.pdf

OSS

https://en.wikipedia.org/wiki/Open_Sound_System
https://wiki.archlinux.org/title/Open_Sound_System

ie: OSS wasn't bad, and had some afvantages over ALSA, but the licensing switch just prompted
people to switch
https://en.wikipedia.org/wiki/Open_Sound_System#Free,_proprietary,_free

ALSA

https://www.alsa-project.org/wiki/Main_Page

The sound card compatibility list is above. The Gentoo and Arch wiki entries are useful.
https://wiki.archlinux.org/title/Advanced_Linux_Sound_Architecture
https://wiki.gentoo.org/wiki/ALSA

Sound card multiplexing

https://en.wikipedia.org/wiki/Sound_card_mixer
https://newbedev.com/why-do-you-need-pulseaudio

Use a sound server. Don't do this manually
https://electronics.stackexchange.com/questions/57476/how-do-i-multiplex-many-signals-into-my-s
ound-card

Pulseaudio

Homepage: https://www.freedesktop.org/wiki/Software/PulseAudio/
User docs: https://www.freedesktop.org/wiki/Software/PulseAudio/Documentation/User
Git: https://gitlab.freedesktop.org/pulseaudio/pulseaudio

https://wiki.xiph.org/A_Digital_Media_Primer_For_Geeks_%28episode_1%29
https://wiki.xiph.org/Digital_Show_and_Tell/Episode_02
https://xiphmont.dreamwidth.org/
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Introduction-to-Linux-Kernel-Driver-Programming-Michael-Opdenacker-Bootlin-.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Introduction-to-Linux-Kernel-Driver-Programming-Michael-Opdenacker-Bootlin-.pdf
https://en.wikipedia.org/wiki/Open_Sound_System
https://wiki.archlinux.org/title/Open_Sound_System
https://en.wikipedia.org/wiki/Open_Sound_System#Free,_proprietary,_free
https://www.alsa-project.org/wiki/Main_Page
https://wiki.archlinux.org/title/Advanced_Linux_Sound_Architecture
https://wiki.gentoo.org/wiki/ALSA
https://en.wikipedia.org/wiki/Sound_card_mixer
https://newbedev.com/why-do-you-need-pulseaudio
https://electronics.stackexchange.com/questions/57476/how-do-i-multiplex-many-signals-into-my-sound-card
https://electronics.stackexchange.com/questions/57476/how-do-i-multiplex-many-signals-into-my-sound-card
https://www.freedesktop.org/wiki/Software/PulseAudio/
https://www.freedesktop.org/wiki/Software/PulseAudio/Documentation/User
https://gitlab.freedesktop.org/pulseaudio/pulseaudio

2024-05-09 09:24 14/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

As usual, the arch page and examples are good:
https://wiki.archlinux.org/title/PulseAudio
https://wiki.archlinux.org/title/PulseAudio/Examples

Jack

Homepage: https://jackaudio.org/
Jack1 git: https://github.com/jackaudio/jack1
Jack2 git: https://github.com/jackaudio/jack2
Wiki (and tools using Jack) https://github.com/jackaudio/jackaudio.github.com/wiki
Archwiki: https://wiki.archlinux.org/title/JACK_Audio_Connection_Kit

Pipewire

Hoempage: https://pipewire.org/#about
Neat demo and features, and other benefits discussed on hackaday here:
https://hackaday.com/2021/06/23/pipewire-the-newest-audio-kid-on-the-linux-block/
Archwiki as always: https://wiki.archlinux.org/title/PipeWire
Wiki - contains useful config parameters for pulse and jack:
https://gitlab.freedesktop.org/pipewire/pipewire/-/wikis/home
Git: https://gitlab.freedesktop.org/pipewire/pipewire

Firewire

If you have one, your best bet is http://www.ffado.org/

Notes

0040 - When I say sound card, most computers have one build in these days, eg: onboard audio.
Physical discrete cards are mostly a thing of the past.
0250 - Sound card multiplexing also often called hardware mixing.
1240 - There is also a “Pro Audio” mode for sound cards that splits all the channels
1705 - Most of these disconnection issues are now fixed as of the time of publishing!

I'll add more notes as I remember when rewatching this.

Please note that due to classes and school and coop, the filming/editing/uploads of my videos are
very delayed, and might not be the most sensitive. This video was filmed April 2021, Edited June-
July 2021, Description written August 2021. I hate writing descriptions and thumbnails…

Contact me

Watch this video on Peertube: https://peertube.tonytascioglu.com More info is probably on my wiki:

https://wiki.archlinux.org/title/PulseAudio
https://wiki.archlinux.org/title/PulseAudio/Examples
https://jackaudio.org/
https://github.com/jackaudio/jack1
https://github.com/jackaudio/jack2
https://github.com/jackaudio/jackaudio.github.com/wiki
https://wiki.archlinux.org/title/JACK_Audio_Connection_Kit
https://pipewire.org/#about
https://hackaday.com/2021/06/23/pipewire-the-newest-audio-kid-on-the-linux-block/
https://wiki.archlinux.org/title/PipeWire
https://gitlab.freedesktop.org/pipewire/pipewire/-/wikis/home
https://gitlab.freedesktop.org/pipewire/pipewire
http://www.ffado.org/
https://peertube.tonytascioglu.com

2024-05-09 09:24 15/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

https://wiki.tonytascioglu.com

Copyright 2021 - Tony Tascioglu I'm making this freely available under a CC-BY-SA-NC.

Email: tonytash@pm.me (not monitored 24/7) I might not get to comments on this video until the end of
my next school/work term, feel free to post anyways.

I hope you enjoyed the video and learned something!

Shoutouts

Randy MacLeod (and the rest of the Wind River Linux userspace team). I know you had asked me about
Pipewire at some point, and I already had this video in the works, so hopefully you find it useful :)

Corrections

I'll update this as corrections are pointed out.

2021-08-19 17:33 · Tony

HD Radio with RTL-SDR

As someone who sometimes tinkers with radios, I sometimes just scroll through channels with a cheap
r820t2 dongle and gqrx.

Intro

Spectrum

The latest thing I noticed was bars of what is presumably digital signals alongside of some commercial
FM radio stations.

(todo: add screenshot here)

I questioned whether it was interference, but ruled that out since it wouldn't be in such a clean pattern,
and the very consistent bandwidth is very reminiscent of digital radio signals.

Digital Radio

At the time, the only digital radio standard I knew of was DAB, which is used in some parts of Europe.

Turns out, there's an (IMO crappier) standard for digital radio used in North America called HD Radio.

https://wiki.tonytascioglu.com
https://wiki.tonytascioglu.com/articles/hd_radio_thoughts

2024-05-09 09:24 16/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

Some downsides I see

Proprietary

Unlike the rather open DAB standard, HD Radio is proprietary, which is enough for me to hate it already.

This means that if you even want to receive or broadcast HDr, you'll probably get hit with hefty fines.

It's also going to (IMO) slow the rate of adoption, since if you're going to spend so much to upgrade a
station, who is going to listen to it?

Needs new $$$ receivers

The reason AM/FM radio still works and is kind-of used in the 21st century is that it's ridiculously simple
to receive (more so for AM then FM), and for cheap.

Digital radio already has a major hurdle there. If I'm going to spend $100 on a new radio, that's not going
to happen *(unless it's for ham radio).

Practically everyone has an AM/FM receiver in their house, probably in an old CD player, boombox or car.
Why would someone spend that much money on a new radio?

At that point, you can just pay for Deezer/Spotify.

I mean, I get why it's more expensive, just like DAB, you need what are basically low power CPUs, since
you're decoding a digital compressed audio stream.

AAC vs MP2

Adding to the cost and proprietary nature is that HD Radio uses what basically amounts to an AAC audio
stream.

Now, at least HE-AAC isn't terrible at low bandwiths, and can at least usually do closer to fullband?

DAB for comparison uses MP2. Some users may be familiar with MP2 as some DVDs used it instead of
AC3 for the audio track.

As a pro to HDR vs DAB, MP3, like MP3, is a rather old codec. I find it's only usable at ~ >192 kbit/s, but
suffers far worse then AAC at low bitrates.

This means that theoretically at least, a 64 kb/s AAC stream is better then MP2.

On the other hand, AAC is very very patent encumbered.

MP2 has the advantage that all of it's corresponding patents have since expired so anyone can use

2024-05-09 09:24 17/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

hardware/software for MP2 without nasty royalties.

AAC is expensive to implement and I guess just hope to not get sued if you're using it.

OPUS really is ideal here - royalty free, which means you can get more widespread adoption, and it
crushes the other codecs at low bitrates.

Speaking of sound at low bitrates:

Limited stream bandwidth

From what I've seen, it's also limited to ~96 kbit/s transmissions with up to 4 streams.

This means that stations need to allocate that limited digital bandwidth among all the content they want
to stream.

I've seen some stations do a main stream at 64 kbit/s and a secondary at 32, and other stations that do
32/32/32. I've also seen 48/16/16.

That's not a lot of bits to go around.

I have yet to see a station use all four and I'm sure it would sound terrible if they did.

As mentioned above, AAC really starts to break down at 64 kbits and below.

HD? More like compression

When I first read the name “HD Radio” I assumed it was some form to do lossless or high bandwidth
audio signals.

“HD”. What a joke that was.

True HD radio might be neat, since while FM doesn't have (digital) compression artifacts-, the volume
levels are compressed with that is probably a brick-wall compressor–.

-except the few stations where I can clearly tell that they are just broadcasting off a s—y 64 kbit/s mp3
stream…

–ie: but a multiband compressor, and crank the ratio dial to the right.

I mean, I can kinda see why. You need to get a high SNR so people further away can actually hear your
stream, but don't want to pass the max modulation limit so the FCC doesn't come knocking.

Digital on the other hand is either all there or none, so you could get much higher sound quality.

Digital TV with MPEG-2 basic compression allowed us to send 720p60 and 1080i60 signals after all, which
was a huge step up from NTSC/ATSC*.

2024-05-09 09:24 18/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

*That's also because video can be compressed digitally more then audio generally but the point stands.
no random noise in a DTV signal.

Anyways, back to my point. HD-Radio uses up to what I counted to be around 100 kbit/s of audio.

Even with one stream, that would sound bad with mp2 and mp3, usable with vorbis and aac, and pretty
good with opus.

But of course, stations like having a substream so most of them use 64 kbit/s or even 32 kbit/s for their
main stream.

As advanced as AAC is, it still sounds terrible at 32 kbit/s. Even at 64, it sounds noticeably worse then
the FM counterpart.

I heard a talk news AM station in a sub-station at 16 kbit/s, I guess it's usable for voice, but still sounds
terrible.

For comparison, OPUS is also fine at around 64 kbit/s. You can hear the compression, but it's bearable,
but it also starts to get worse around 32 for stereo music.

HD Radio sounds way worse overall then FM though. Bonus points for feeding the volume compressed-af
signal to the digital stream too, even though it's unnecessary. Back to the loudness wars I guess.

Bandwidth usage

HD-Radio signals take up a lot of space.

I guess we're lucky here is NA that we don't have many stations in urban areas.

In Europe, most stations only get 100 kHz spacing, and at most 200 kHz.

When I was in Istanbul, they had over 100 stations in the city on all even numbers (100.0, 100.2, so on)

(they also had some questionable stations with questionable modulation on some off numbers interfering
with everyone else…)

Meanwhile, in Toronto, forget about 200 kHz, from my room, I can only pick up ~15 stations in total. We
have the space here to do a digital stream beside fm stations.

What I'm trying to say is that in Europe, allocating almost 100 kHz on the sides of the station will be
impossible, since other stations are there.

Compared to DAB, HDr takes up more bandwidth from what I can tell. You'd probably need to use a
different part of the spectrum.

Note: You can also do what Norway did and I guess just kill off FM and switch to DAB. I don't recommend
this approach.

See my notes above, namely the $$$ receivers part for why.

2024-05-09 09:24 19/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

Why would I listen to it

If I wanted to hear a crappy 64 kbit/s AAC audio stream. I'd just press the listen online button on their
website.

Surprise! Most people already have a computer/phone with an internet connection that can play those
streams.

Not to mention, by the time I open a bad sounding HDR stream, I'd just play the playlist I WANT,
WITHOUT ADS from Deezer/Spotify.

I only put up with ads on FM since it's free to listen to, and FM radios are basically free most of the time.

I ain't paying 100$ to listen to ads at 64kbit/s where I don't even get to pick the music, and there are only
4 stations.

Even if a digital radio was free, I think it would gain limited adoption in this day and age.

Receiving signals on Linux

There is a program on GitHub that uses some reverse engineering to play the modified AAC streams.

You can find it here: https://github.com/theori-io/nrsc5

There's also a Python GUI should you prefer here: https://github.com/cmnybo/nrsc5-gui

It works on the cheap R820t2 receivers without many issues (except for the garbage antenna not
receiving anything useful)

I guess the GUI can also show a traffic map and weather radar, if the stations bother broadcasting that.
but again, anyone with a receiver fancy enough to show a traffic map probably has a freaking cellphone
with google maps that also acts as navigation.

Conclusion

Maybe I'm acting like an old-person here, but the simplicity (and cheapness) of AM/FM made is so
prevalent. The fact that it was so prevalent was what made it good.

Need to reach a city in an emergency? Chances are, 70% of them have at least a crappy radio.

Nobody (that I know of) would buy an HD Radio receiver (or DAB receiver for that matter). By the time
you start putting a CPU and everything, that's already a basic computer.

For that money, why listed to compressed radio with ADS when you can just fire up a streaming service.

Thanks for reading. Leave any comments/questions down below.

https://github.com/theori-io/nrsc5
https://github.com/cmnybo/nrsc5-gui

2024-05-09 09:24 20/20 The Blog

Tony Tascioglu Wiki - https://wiki.tonytascioglu.com/

2023-11-07 16:48

Older entries >>

From:
https://wiki.tonytascioglu.com/ - Tony Tascioglu Wiki

Permanent link:
https://wiki.tonytascioglu.com/blog

Last update: 2023-12-20 07:34

https://wiki.tonytascioglu.com/blog?first=5
https://wiki.tonytascioglu.com/
https://wiki.tonytascioglu.com/blog

	Table of Contents
	The Blog
	Original Panel
	New Panel
	Worth it?
	Introduction
	Some background information
	What are the causes?
	Why is it important?
	Who is affected and in what ways?
	How can similar problems be prevented in the future?
	If such a problem happened, how can we mitigate it?
	Conclusion
	Biblography
	Further reading
	Extra Insight
	Timestamps
	Introduction
	The Hardware
	Kernel Drivers
	Userspace Sound Servers
	Pipewire (and ramble)

	Links (and references)
	Sound Cards
	Check ALSA compatibility of a sound card
	DAC and ADC
	Nyquist Shannon sampling theorem
	Chris Montgomery Videos
	Kernel Driver Architecture
	OSS
	ALSA
	Sound card multiplexing
	Pulseaudio
	Jack
	Pipewire
	Firewire

	Notes
	Contact me
	Shoutouts

	Corrections
	Intro
	Spectrum
	Digital Radio

	Some downsides I see
	Proprietary
	Needs new $$$ receivers
	AAC vs MP2
	Limited stream bandwidth
	HD? More like compression
	Bandwidth usage
	Why would I listen to it

	Receiving signals on Linux
	Conclusion

